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The Dean problem of steady viscous flow through a coiled circular
pipe is studied numerically. We compute the structure of the sym-
metric families of the flows that exist as the crucial parameter D
varies, which is in accordance with those stated in Yang and Keller
(Appl. Numer. Math. 2,257, 1986). Furthermore, we find a asymmet-
ric flow emanating from the symmetry-breaking bifurcation point,
which they could not find since they restricted the numerical study
on the flows symmetric about the x-axis. © 1996 Academic Press, Inc.

1. INTRODUCTION

The flow through curved pipes has long been studied
since the early works of Dean [4, 5]. For example, Dennis
[6], Collins and Dennis [2], and Dennis and Ng [7] have
computed such flows when the coiling ratio a/L is small.
Here ais the pipe radius and L is the radius of the curvature
of the axis of the pipe. Van Dyke [10] has applied the
Stoke series and the Dombes—Sykes technique to this prob-
lem. Yang and Keller [13] have computed the structure of
the symmetric families of the steady, laminar, viscous flows
through a curved pipe of circular cross section that exists
as the crucial parameter D varies. Here D is the Dean
number defined by

D = Ga*(2alL)?/(uv),

where G is the constant pressure gradient driving the flow,
w is the viscosity, and v is the coefficient of kinematic vis-
cosity.

For the pipe with a rectangular cross section, Winters
[12] has computed the bifurcation structure of the flows
and found that a pair of asymmetric solutions arise from
asymmetry-breaking bifurcation point on the primary sym-
metric flow branch.

Daskopoulos and Lenhoff [3] have shown that for the
case of the circular cross solution the two- and four-vortex

* This work was supported by NSFC and State Major Key Project for
Basic Research.

symmetric solutions are stable to symmetric disturbances,
while the symmetric branch joining them is unstable. They
pointed out that there were unresolved issues including
the possibility of asymmetric solutions and the response
to asymmetric disturbances and the effects of curvature.

In this paper, we would like to solve the above issues
proposed by Daskopoulos and Lenhoff [3]. We are inter-
ested in finding the asymmetric solution branch after the
symmetry-breaking bifurcation takes place for the flow of
the pipe with a circular cross section. Thus, we should
make Fourier expansions of the stream function, axial ve-
locity, and vorticity in more complete forms (3.1), which
means that the unknown Fourier coefficients are doubled
and the nonlinear terms in the equations are more compli-
cated. Meanwhile the stability of the solution branches of
the flows to asymmetric disturbances and the effects of
curvature are also considered.

The outline of the paper will be as follows. In Section
2 we formulate the problem, retaining the exact equations
(valid to all orders in € = a/L) which means that we con-
sider the effects of axial curvature. Expansions in Fourier
series are introduced in Section 3 to get a system of the
Fourier coefficients. Numerical methods are introduced in
Section 4. These employ centered difference and Newton’s
methods with continuation and path following techniques
introduced by Keller [9]. The stability of the flows to asym-
metric disturbances is also discussed in Section 4. The
extended systems which are used to locate the fold point
and the symmetry-breaking bifurcation point accurately,
are proposed in Section 5. Numerical results are presented
and discussed in Section 6.

2. GENERAL FORMULATION

We employ the notation used in [2, 7] as indicated in
Fig. 1. The circular cross section of the tube in the (x, y)-
plane has radius a with the centre at L on the x-axis. The
tube is coiled about a circle of radius L in the (x, z)-plane.
With no pitch in the coil the tube thus forms a torus. Our
equations are exact for this case. Dimensionless velocity
components of the fluid are (u, v, w) at a point P with
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FIG. 1. The tube cross sections showing coordinates, velocity components, axial flow distribution sketch and cross-flow streamlines sketch.

dimensionless polar coordinates (7, «). Here u is the radial
part and v is the angular section and r = r'/a, where r’ is
the dimensional radius.

We seek flows independent of 6, the angular deviation
from the (x, y)-plane. A stream function ¢(r, «) is intro-
duced in terms of which the transverse velocity components
are given by

1o
u(r,a) = r(1+ ercos a) dar’ (2.1)
v(r, ) = ~ o

(1 +ercosa) or’

Here ¢ = a/L is the “coiling ratio” and the continuity
equation is thus satisfied. Using these velocity components
in the Navier—Stokes equations we introduce the modi-
fied Laplacian

vzzl—ksrcosa 9 r 9
r or \1+ ercos adr

Jlof_ 1 0
roda \1+ ercos a da

and the vorticity

2.2)

Q= -V, (2.3)

to get for the w-momentum equation,

__— 1 (6_¢6_W_3_¢‘9_W> =D, (24)

r(1 + ercosa) \ or da

and, on elimination of the pressure from the other momen-
tum equation,

r(1 +ercosa) \or da  da Ir
2eQ)

+ S —
(1 + ercos a)?

w . oW  COS« dw
=————|sina—+ — .
(1 + ercosa) or r da

(sin o 3¢ + L8 6_([)) (2.5)
or r Jda

Boundary conditions on the wall of the tube, r = 1, yield
I
w(l,a) = ¢(1, @) =5(1,a) =0, 0=sa=nm. (2.6)

Let the problem (2.3)—(2.5) be rewritten as the operator
form,

G(Z,D, &) =0, (2.7)

where Z = (Q, w, ¢). Obviously, the problem (2.3)—(2.5)
is Z,-symmetric, i.e.,

SG(Z,D,¢e) = G(SZ,D,¢),

where SZ(r, @) = (=Q(r, —a), w(r, —a), —¢(r, —a)).
Yang and Keller [13] only studied the symmetric flows,
that is, they assumed
w(r, —a) =w(r,a), ¢(r, —a) = —d(r, o),

Or, —a) = —Q(r, a). (28)
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But in this paper we do not assume (2.8), as a result, both
of the symmetric and the asymmetric solution branches
are expected.

3. FOURIER SERIES EXPANSIONS

To solve the boundary value problem posed in (2.2)-
(2.6) we seek Fourier expansions of the stream function,
the axial velocity, and the vorticity in the forms:

o(r,a) = i fi(r) sin ke + i hy(r) cos ko (3.1a)
k=1 k=0

w(r @) = S w(r)sinka + S we(r) coska;  (3.1b)
k=1 k=0

ra) = g sinka+ S o) coska.  (3.1¢)
k=1 k=0

Using the expansions (3.1) in the differential equations
(2.3)-(2.5) and applying the orthogonality properties and
other identities for the trigonometric functions yields an
infinite system of coupled nonlinear, second-order ordi-
nary differential equations for the coefficient functions
{fi(r), 8i(r), wi(r), hi(r), vi(r), wi(r);. Specifically, we get
from (2.3), with fy(r) = go(r) = 0, h_y(r) = v_1(r) = 0:

1 [& (k-1)(k-2) Lld K
26
i)+ Jor| - GEDEAD) g

1 1
= ) ergi-1(r) — gi(r) — Eer gii(r), k=1, (3.2a)

—sr(l + 5k1)[d2 (k_lz,#]hk 1(r) + [d2 +1

o +or| £

_% (1 + Ska(r)erve_1(r) — vi(r)

d k

(k+1)(k+2)
e T] Ny (r)

- %srvkﬂ(r), k=0. (3.2b)

From (2.4), we obtain, with ug(r) = 0, w_1(r) = 0:

(k—1)(k—-2)

r2

2
—sr(l + 8k1) [d

dz
+ == +-
[dr2

] wi1(r)

1d Kk
rdr 12

} Wwa(r) + %sr

75

[5_22 — W] Wi1(r) = Ruk(r)

+ R3k(r) - 5k‘187D - 5/(’0D, k = 0, (333)
1 d_z_(k—l)(k—Z) d2 1i_k_2
2 8r[dr2 r? () + dr? - rdr r?
1 d> (k+1)(k+2
u(r) +—s [d 5 _ (ke Dk +2) 25 )]
Up1(r) = Rox(r) + Ru(r), k=1 (3.3b)

From (2.5) we get, with g_1(r) = go(r) = 0, v_4(r) = 0:

o)tz
K

1d k? 1
Jfﬁ}*i

1d (k= 1)(Qk-3)
r d}’ T:lgk_l(r)

1
o
{[£22 5 el ST

e d> & 1 d? 1 d

- ‘%(Tﬁ - 5>gk<’> 3 [ artrar
_(k+ 12k +3) 1)(2k +3) 1 V| a
1(7‘) + E er W

_ m’#]gmz(i’) = %SVNk—l(”) + Nil(r)

+ %8}’Nk+1(r) + P]k(r) +

%SQU{(}’), kE 1, (343)

d2 1d k—1)2k—-3
_8”(1 +5k1)|: ;E._()r(—z):|vk1(r)
2 1d Kl 1,8 R
* {[dr2 * rdr r2:| * 287 ar vx(r)
e d*> & 1 d> 1d
- 5&1(7% z)”k@ 2 [2W+;d_r

C(k+ 1)(2k - 3)] )+ <_ 8r>2 [_

_ m#]vmz(r) = %WM/{A(’) + Mi(r)

+ %erkH(r) + Py(r) + %sQZk(r), k=0; (3.4b)
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where J ; is the Kronecker symbol and Ry, Ry, Rsi, Rak,

Plk’ P2k’ Qlka sz, Mk, Nk are defined as follows:

1+ 6
Ru(r) = ( %,0)

Z {lln ~

n=0

+ (n+ k) fua(D)wi(r) + 1 [ fri(r)

K| fin-si(r)

+ sign(n — k) flu-x(r)Iwa(r)k; (3.5a)
Ry = =525 (= Kl

+ (n + Ky (r) 1 (r) + nli),x(r)

+ sign(n — K)ufy-(r)ha(r)}; (3.5b)

RZk(r)

_13 _
=5r§{[|”

=l i) = sign(n = k) flu-w(n)]un(r)};

k| fia-sg(r) = (n + k) fea(r) Jus(r)

(3.6a)

Ru(r) = 55 3101 = By ) = (0 + Ky

= n[(1 + Sy—ihp—r(r) + hpi(r)]wa(r)}; (3.6b)

M) = {3l = K0
— (0 + K) fu(P)]gu() = nl Faealr)
— sign(n — k) fir (r)]geM)}
+§ﬂm—@mﬂm—m+mm%mwm

tn[=fru(r) + (1 + 5n,k)h3«k(r)]vk(r)}}; (3.7)

M(r) =

(1 + 80)7! 6ko) { S il = Kl foe(r)

(14 K)o (N)o(r) + L Fealr)
mm%mww»+2

+ sign(n —

[k = mhyi(r) — (1 + k) i(r)182(r)

— () + (14 5n,k)h'nk(r)]gk(r)}}; (3.8)

ﬂxnzi{gywxﬂ—éwxmul+&mowwlAo
= Wanrex()] = [wa(r) + S w1+ 8,-10)
40 = (% B s+ 3 {0
—é%m]r%wao+ﬁ@m+l—mMﬂkm1
+[wm+§%vﬂmnwm—a@m—l—m

Mn—l—k|(r)]}}; (3.9)

(1+ 807" 8ko) {i { ) - gun(r)][— (1 + Spr)

Pu(r) =
wmwm—WMWMM[wm+§wm]
m+@L@mlAﬂ+a+@mwwwmﬂ

+ S w0 =200 k0

+sign(n + 1 — K)up,1-x(r)] + [W},(r) + %wn(r)}

[—sign(n — 1 + K)u—144(r)

—-agn<n——1——k>unlﬂoo]}}; (3.10)

0= S {| 70 =210 [10-400) ~ signtn +1 -
wﬂam—[mm+§n@ﬁ&HAA
sign(n 1= K 41| + 3 {109
_ ghn(r)}[— (14 Skns1)Vs1-#(r) + Vprax(1)]
- [h,;(r) + %hn(r)][— (1 + Sy-1,L)Vp-1-#(r)

+(1+ 6n+k,1)vn1+k(r)]}}; (3.11)
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0u1=(1+ 55 {3 {[h,xr) - %hm] [~80s1(1)

~ sign(n + 1= kg ()] + [h;xr) + %hnm]

[sign(n — 1 + k)gj—14x(r) + sign(n — 1 — k)

gn1k|(r)]} + {i {f;z(”) - gfn(”)] [(1 + Skne1)

n=1

U\n+1—k\(r) + Vprrail(r)] — [fr’z(”) + gfn(”)]

(A + 1 p)Vp—1-p(r) + (L + 5n+k,1)Un—1+k(”)]}-
(3.12)

At the origin, r = 0, of the polar coordinates (r, «)
continuity requires that ¢(0, «), w(0, ), (0, @) be inde-
pendent of o. From (3.1) we thus obtain that

fi(0) = hi(0) = wi(0) = ui(0) = gx(0) = v4(0) = 0

k=12, .. (3.13a)

For simplicity we assume that
ho(0) = ve(0) = 0. (3.13b)

Note that a condition on wy(0) is not obtained, but w(0)
= w(0, @). The condition (2.6) at r = 1 applied to (3.1a)
(3.1b) yields

il)y=0, k=1, (3.14a)
fi)=0, k=1, (3.14b)
h(1)=0, k=0, (3.14c)
h(1)=0, k=0, (3.14d)
wi(1) =0, k=0, (3.14.¢)
w(1)=0, k=1. (3.14f)

The formal consistency of the “order” of the system and
the number of boundary conditions seems to be off by
one, since all of the equations are second order and we
do not have two boundary conditions on wy(r). This is
easily remedied by noting that the equation in (3.3) for
k = 0 can be reduced to a first-order equation. To do this
we multiply by r and integrate over [0, r]. In evaluating at
r = 0 we use (3.13) and the assumption that

lim [rwi(r)] = lim [FPw}(r)] = 0;
r—0 r—0

the result is the first-order equation

dirwo(r) - %sr [dir wi(r) — %Wl(l’)]
d (3.15)
- 21_r >, (nfu(rywa(r) — nhy(r)u,(r)) — %rD,

=1

The analytical problem is thus reduced to solving (3.2a)
for k = 1, (3.2b) for k = 0, (3.3a) for k = 1, (3.3b) for
k=1, (3.4a)for k =1, (3.4b) for k = 0, and (3.15) subject
to the boundary conditions (3.13) and (3.14).

4. NUMERICAL PROCEDURES

To solve, or rather to approximate, the solution of the
problem formulated in Section 3 we first truncate the Fou-
rier expansions, then we use difference approximations
on the system of ODEs, and finally solve the nonlinear
difference equations by means of Newton’s method and
continuation procedures. We describe these techniques
below.

4.1. Truncation of the Fourier Expansions

Under the assumption that the series in (3.1) converge
sufficiently rapidly we replace them by the finite trigono-
metric expansions obtained by setting

k> K.
(4.1a)

Ji(r) = hi(r) = gi(r) = vi(r) = wi(r) = w(r) =0,

We then use (4.1a) in the Egs. (3.2)—(3.15) and obtain a
system of 6K + 2 second-order and one first-order ordinary
differential equations for the 6K + 3 unknowns,

1=k=K;
0=k=K.

fk(r)’ gk(r)’ uk(r)v

hi(r), vi(r), wi(r), (4.10)

There are 12K + 5 boundary conditions in (3.13) and (3.14)
when we terminate those relations at k = K. We seek to
solve this two-point boundary value problem numerically.

4.2. Differential Approximations

We replace a uniform grid of points r; = jh, 0 = j = M
+ 1, with ry; = 1 on the interval 0 = r = 1. At each
point of the grid we introduce approximations to the coef-
ficients in (4.1b) with the notation

fe(r) = fejr hilry) = hej,  8(r;) = 8k

vi(ry) = vijs wil(ry) = ugj, wilr) = we;.

We employ the difference operators, for any mesh func-
tion, say u;:
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A
k+1D)(k+2
1 |:D+D - —( Zg )] Wi+1,
» -7 J
< By, ’F;/ T2 = R+ Rarj— SraerD — & oD, k=0,
c 2 (4.3a)
Fa 1 k—1)(k—2
0 Esrj |:D+D - (z#:l Up-1,j
J
2
+ |:D+D_ + lD() - k—z]uk,,—
rj r;
1 (k+ 1)k +2)
0 . » +§srj |:D+D —r—jz Up+1,j
FIG. 2. Stability results: the figures Mp on the branches denote the - RZk’j + R4k’j » k=1 (4'3b)
number of positive eigenvalues of Jacobian Gx(X; D, ): —, symmetric
solutions; ———, asymmetric solutions. 1 2 k—2) (k-3
(‘ 8}’,‘) |:D+D_ - —( )g ):| gk—2,j
2 rj
W T W WU = W1 T U 1 1 k—1)2k -3
D+u]'= ! h ], D—u]'z ! h ! 5 D(Juj:#~ +§8r]’ [2D+D+;DO_%:|gkl,]
J J
Then the discrete or difference approximations to (3.2), 1. k_2 1,, _ Iiz
(3.3), and (3.4) are taken to be PP ,—DO r? AR D.D- r?
L[,y k= 1(k-2) P gk-—5k1<182r2D+D_—8—2>gk-
Ser| DD~ —r]z Ji-1j+ | DD +7j 0 J “\4 2)°%
> 1 1 (k + 1)(2k + 3)
- %] fej+ %sri [D+D_ _(eF D(k+2) 13§k * 2)] t5er [2D+D + ;jDo IR 8i+1j
J J
1 1 IR (k +2)(k +3)
Jrj = TS Ei8k-1j T 8kj T 5 Ti8keL)> k=1; + <§ 8"1’) [D+D - —r]g 8k+2.j
(4.2a) 1 1
= zsr]-Nk_l’,- + Nk,j + Egerk+1’i
18,,/_(1 + Oc1) [D+D_ — W} Bi1; 1
2 i +P1k,/’+§8Q1k,j, kzl, (443)
2
+ D+D, +1D0_k_2 hkj-i-lsrj
7j il 2 Ly (k=2)(k—3)
Esrj 1+ Or2)| D+D- — T Up-2,j
k+1)(k+2 1 !
! +3en(1+ ak,l)[zDJ) +- Dy
1 J
ery(1 + 8c)vir; = Uiy = 5 elVaeny k=04 D2k 3 . 2
(4.2b) - ()r(—g)]vk_w + {[D+D_ +=Dq — ﬁ}
J J J
1 (k —1)(k —2) 1 K &r?
581’](1 + 6](’1) |:D+D _r—]2 kal‘j +§82r]2 D+D7 _r_jz Uk’]_ 5k’1 T]
1 k? 1 &2 1 1
+|D.D_+ ;]Do — r—lz Wi+ 58}’]- D.D_— E Uk, t 587}- 2D.D_+ ;IDO
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D
FIG. 3. Friction ratio, y./vs, vs. Dean number, D, for case k = 10, h = 5, ¢ = 0.0.
2, ..., M. The quantities le i R2k i qu i R4k i Nk i Mk i
) ) ) Jo Jo 3 Jo .,/7 .,/» Jo
_ W} Vor + (l 8,/,) [D+D P, ng,j, .Qlk,j, and Q. ; are' t.he .ObVIOU.S finite difference
Fj 2 approximations to the quantities in (3.5)—(3.12) centered
(k +2)(k + 3) 1 at r;. Since only first deriva‘Fives occur in these expressiqns
— —2] k2 = S M1+ My we employ D,f, ; to approximate f,(r;), etc. The remaining
di first-order equation (3.15) is centered at the points r;_y,
1 1 =(j —3has
+ E 87’ij+1’]‘ + PZk,j + E 8Q2k?}', k = (. (44b)

1 1
. . .. . D_wy;+ zeri1p|D-wi; — Q2lri-1pp) = Wy
Each of these difference equations is imposed for j = 1, Yo T S8l 12lD-wij = 2lrian) 2 Wi+ w0l

Y/ s

1
0.0 4000.0 8000.0 12000.0 16000.0 20000.0 24000.0
D

FIG. 4. Friction ratio, y./vs, vs Dean number, D, for case k = 15, h = %, ¢ = 0.0.
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AXIAL VELOCITY CONTOUR STREAM FUNCTION CONTOUR

AXIAL VELOCITY CONTOUR STREAM FUNCTION CONTOUR

FIG. 5. Axial velocity, w, and stream function, ¢, contour lines: D = 8000, K = 10, & = 45, ¢ = 0. (a) First symmetric branch: Max w = 618.4,
Min w = 0, Max ¢ = 24.08, Min ¢ = —24.08. (b) Second symmetric branch: Max w = 628.9, Min w = 0, Max ¢ = 23.04, Min ¢ = —23.04. (c)
Third symmetric branch: Max w = 601.3, Min w = 0, Max ¢ = 21.76, Min ¢ = —21.76. (d) D = 18000. Asymmetric branch: Max w = 1102, Min
w = 0, Max ¢ = 32.51, Min ¢ = —32.51.
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AXIAL VELOCITY CONTOUR
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STREAM FUNCTION CONTOUR

FIG. 5—Continued

K 1 1
2 ni (fn,j +fn,jfl) 5 (Wn,j + Wn,j*l)

-12n
1 1
—n 5 (l’ln,]’ + hn,j*l) 5 (un,j + un,j*l)

- r]'_l/z%D, ]: 1,2, ,M + 1. (45)

The boundary conditions (3.13) and (3.14) become the
corresponding conditions:

Jro=ho= 8o = Vo= Wro =0 =0, k=12,..,K;

hoo = 05000 = 0; (4.6a)
Jema = Perer = Wi = e = 0, k= - K;
hos1 = woms1 = 0. (4.6b)

The remaining conditions, in (3.14b), (3.14d), are imposed
in order to retain second-order accuracy as

TABLE I

Critical Dean Number F,, (m = 1, 2), Fold Points; By,
Bifurcation Point

K e F F, B,
10 & 0.0 127522 950.4 12734.0
10 & 0.05 12822.9 1036.0 12355.7
10 & 0.1 129632 1129.8 12026.4
15 N 0.0 121184 951.5 12111.6
15 & 0.05 117832 1025.9 11777.5
15 E 0.1 11491.6 1106.5 11484.0

Dy femsr = W 0, k=1,2,..,K;
Dohypria Ehk'MﬂZh Fem =0, k=0,1,2,.

The mesh point ry,, is not in [0, 1] and so the values fi a2,
hy w42 seem extraneous. However, they are eliminated by
imposing the difference equations in (4.2) atj = M + 1.
The results, after using (4.6b) and the above, is for ¢ = 0:

(4.7a)

kM1 =

2
- Pfk’M’ k=1,2,.,K

UVikM+1 = ]32 hkM’ k= 0, 1, 2, ceny K. (47b)

For ¢ > 0 we must add the terms:

3e[8k-1me1 + Grrime1 + DD _(ficim + frrim)]
for (4.7a),

e[Vt + Vit + DiD (Mg + i)
for (4.7b).

The numerical problem is to solve the nonlinear system
of the difference equations in (4.2), (4.3), (4.4), (4.5), and
(4.7). These form 6KM + 2K + 3M + 2 equations. There
are precisely that many unknowns {f; ;, fix ;. 8x.j» Uk.j» Wk, j>»
ur ;4 when the quantities in (4.6) are eliminated. We go
further and use (4.7) to eliminate the 2K + 1 quantities
{8k.m+1> Vkm+1}- Then we have only (6K + 3)M + 1 equa-
tions and unknowns.
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STREAM FUNCTION CONTOUR

AXIAL VELOCITY CONTOUR STREAM FUNCTION CONTOUR

AXIAL VELOCITY CONTOUR STREAM FUNCTION CONTOUR

FIG. 6. Axial velocity, w, and stream function, ¢, contour lines: D = 8000, K = 10, & = 35, ¢ = 0.1. (a) First symmetric branch: Max w = 622.3,
Min w = 0, Max ¢ = 22.4, Min ¢ = —22.4. (b) Second symmetric branch: Max w = 631.5, Min w = 0, Max ¢ = 21.52, Min ¢ = —21.52. (c) Third
symmetric branch: Max w = 606.9, Min w = 0, Max ¢ = 20.81, Min ¢ = —20.81. (d) D = 18000. Asymmetric branch: Max w = 1100, Min w = 0,
Max ¢ = 30.59, Min ¢ = —30.59.
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AXIAL VELOCITY CONTOUR

STREAM FUNCTION CONTOUR

FIG. 6—Continued

4.3. Newton’s Method and Path Following Techniques

To solve the difference equations we use Newton’s
method combined with continuation procedures to ensure
good initial estimates of the solution as the parameters are
varied. To do this efficiently the unknowns must be ordered
in a manner that simplifies the structure of the Jacobian
matrix. To describe our ordering we first introduce the
vectors f;, h;, g;, v;, u;, and w; of dimensions K, K + 1, K,
K + 1, K, and K + 1, respectively:

=gt s i) l=j=M;
hf=(hoj hyj,hi ), 1=j=M;
8 = (818> 8ky)s 1=j=M+1;
vf = (v, V1 Vky),  1=j=M+1;
wf =, i),  1=j=M;

T _ .
Wj =(W()1j,W1’,‘,..., WK’/‘), 1§]§M

Recall that (4.7) gives gyi1 = —2/h?*fy and vy = —2/
h?hy (for the case € = 0). Therefore, g1 and vy, can
be eliminated. The remaining (6K + 3)M + 1 unknowns
are represented in the vector

XT=(woos f1, g0, ul,h, vl wi; . 48)
Fhas ghaswhas hig, v, wi) '

Now we order the equations in a corresponding manner.
That is, for a fixed j-value we take (4.5) and all of (4.2a)
forl = k=K, (42b) for 0 = k = K, (4.3a), (4.3b) for 1
=k=K,(44a)forl =k =<K, (44b) for0 < k = K. The
equations ordered in this manner for j = 1, 2, ..., M and

finally (4.5) for j = M + 1 can be written as a vector
equation in the form

G(X:D,¢) = 0. (4.9)

We denote solutions of (4.9) by X = X(D, €). It is obvious
that (4.9) has an exact solution X(0, 0) = 0. Newton’s
method and the continuation procedure are used to follow
the solution branch of (4.9) for the case of regular G x(X(D,
€), D, €). The initial estimation for X(D + 6D, ¢) can be
obtained by

XO(D + 6D, &) = X(D, &) + SDXp(D,e), (4.10)

where Xp(D, ¢) satisfies

Gx(X(D,¢);D,e)Xp(D,e) = — Gp(X(D, ¢); D, ¢).
(4.11)

The iterative sequence {X?(D + 6D, &)} can be obtained
by solving

Gx(XV; D + 8D, e)(X — X©)

= G(X9:D+D,e), i=0,1,.. 12

Here Gy is the Jacobian matrix which as a result of the
above-indicated ordering has the block-banded structure
shown below. Each square block is a submatrix of order
(6K + 3) X (6K + 3).
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AXIAL VELOCITY CONTOUR STREAM FUNCTION CONTOUR

FIG. 7. Axial velocity, w, and stream function, ¢, contour lines: D = 8000, K = 15, & = 45, ¢ = 0. (a) First symmetric branch: Max w = 621.8,
Min w = 0, Max ¢ = 23.95, Min ¢ = —23.95. (b) Second symmetric branch: Max w = 632.5, Min w = 0, Max ¢ = 22.93, Min ¢ = —22.93. (c)
Third symmetric branch: Max w = 598.1, Min w = 0, Max ¢ = 21.69, Min ¢ = —21.69. (d) D = 18000. Asymmetric branch: Max w = 1113, Min
w = 0, Max ¢ = 32.21, Min ¢ = —32.21.
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There are M such rows of blocks. The matrix is block tri-
diagonal. All other elements in Gy are zero. Most of the
computing effort goes into solving the linear algebraic sys-
tems in (4.12). Thus, we use (4.10) to get a good initial
estimate to reduce the computational cost. The method
described in (4.10)—(4.12) is known as Euler—Newton con-
tinuation. It is extremely effective and usually converges
quadratically, except for the case of singular Gx. The fail-
ure of the method to converge does usually signal the
presence of a bifurcation or fold point on the solution path
being generated. In particular, a simple fold with respect
to D is a singular solution, say (X*, D*), which has the
properties that:

(1) dim Null(G¥) = 1; i.e., all solutions of G%¥¢ = 0
are ¢ = a¢y, @ € R, for some nontrival symmetric ¢y,
That is, 0 # ¢ € X = {x|Sx = x}.

(2) G% & Range(G%);i.e., (i, GB) # 0 for all solutions
of (G¥)Ty = 0.
A symmetry-breaking bifurcation point with respect to

D is a solution which has the property (1), except for ¢ €
X, = {x|Sx = —x} and

(2)' G§ € Range(G%); i.e., (¢, G5) = 0, and

Ghxdp + Gixdv & Range(G¥),

where v € X, = {x|Sx = x} is uniquely determined by

Giv + G =0. (4.13)

The group theory applied to the bifurcation problem
shows that the solution path of (4.9) consists locally of two

smooth transversally intersecting branch C, (symmetric)
and C, (asymmetric) with the following representations

(see [1]):

C,={(X,D): X=X*+ & + wi($),

D = D* + & |& < &), (4.14a)
Co={(X,D): X = X* + &b + wy(§),
D = D* + O(&), |4 < &), (4.14b)

where |w)|| = O(&),i = 1,2, v € X;, & € Null(G}) N
X,, v is given by (4.13). The asymptotic expression (4.13)
is useful for the initial estimate of the Newton’s method
which is very effective and quadratically convergent to
follow the asymmetric solution branch near the symmetry-
breaking bifurcation point.

To overcome the difficulty caused by the singularity,
pseudo-arclength continuation is introduced as in [9]; that
is, we do not parameterize the solution path by D, but
rather introduce a new pseudo-arclength parameter s and
a new scalar constraint and seek to solve the augmented
system
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G(X(s),D(s),e) =0, (4.152)
N(X(s), D(s),s) = (X(s0), [X(s) — X(s0)])

+ D(s0)[D(s) — D(s0)]

+ (s —59) = 0. (4.15b)

Here [X(so), D(so)] is a previously computed solution for
¢ fixed in the present discussion and for s = sy. By X =
dX/ds, D = dD/ds we denote the components of a tangent
vector to the solution path {X(s), D(s)}. The constraint
simply requires that the point (X (s), D(s)) lies on the plane
normal to this tangent at a distance (s — s,) from the point
of tangency.

We use the system (4.15) when the previous Euler—
Newton scheme begins to show signs of failure (i.e., too
many iterations until convergence). We solve (4.14) by
Newton’s method. The Jacobian of this system is

GD>
Np/’
where N(X, D, s) is the left side of (4.14b). This Jacobian
is nonsingular at the regular solution points and at the
simple fold points. This is why our method has no difficult-
ies in computing solution paths through folds. To solve for
the Newton iterations, we use the bordering algorithm

described in [7] which is designed for systems with coeffi-
cients as shown in (4.16).

AG. M) (GX (4.16)

AX,D)  \Ny

4.4. Stability

The unsteady-state Navier—Stokes equations take the
form

L (1o _sea)
T r(1 +ercosa)\dr da  da or
(4.17a)
d & S 1
—(— = — + e
ar( Vig) v'é r(1 + ercos @)
105 _ 100\ e
<6r dae da ar> ( ¢)
_ %2
_2e(=V'¢) (sin 29% . m%)
(1 + ercos a)? ar r oa
_ w sin aw n cos o dw
(1 + ercosa)? “or roda)’
(4.17b)

where time is scaled as 7 = vt/a®.
After discrete approximations, the system equations can
be written in the form as

K4 0X
ks

=G(X;D,¢),

where .o/ is a positive definite matrix which is the approxi-
mation of the operator (§ _%), G(X; D, &) is the approxima-
tion of the right side of (4.17) which is equivalent to G(X;
D, ¢).

The sign of eigenvalues of Jacobian .«/ "'Gx(X,; D, €),
where X, denotes a steady-state solution, determines the
stability of the flow. Since .c7 ! is also positive definite, the
sign of the corresponding eigenvalues of .«/ ~'Gx(X,; D,
¢) and GX(XO; D, ¢) is the same. During the computation,
the appearance of the positive eigenvalues of Gy(Xy; D,
¢) is monitored (Fig. 2). The bifurcation analysis can also
be made to decide the stability of the flows, because the
bifurcation phenomena is connected with the change of
the stability.

5. EXTENDED SYSTEMS

In order to locate the fold point and the symmetry-
breaking bifurcation points accurately, an extended set
of equations

G(X,D)=0
Gx(X,D)$p=0 (5.1)
Lo—1=0

was proposed respectively by Moore and Spence [8],
Werner and Spence [11] for detecting the fold point and
the symmetry-breaking bifurcation point. Here X € Xj,
¢ € X, for the fold point, ¢ € X, for the symmetry-
breaking bifurcation point, and L is a linear functional
which normalizes ¢. The Jacobian matrix of (5.1) is

Gx 0 Gp
Gxx¢ Gx Gxpo (5.2)
0 L 0

which is regular at the fold point or the symmetry-breaking
bifurcation point. The regularity of (5.2) implies that the
Newton method can be used to solve (5.1). The effective
algorithms were designed in [8, 11] to solve Newton’s itera-
tions with Jacobian (5.2).

6. NUMERICAL RESULTS AND DISCUSSION

In addition to the stream function and flow velocity, we
have computed Re, the Reynolds number based on the
mean axial velocity,
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Re =2V2 ﬁ wo(r)rdr,

and the friction ratio (ratio of curved, vy., to straight, v,
wall friction):

Ye — 4V2 Rel/D.

Vs

We have computed solution paths with D varying for
the Fourier truncation K = 10, mesh spacing & = 1/40,
and coiling ratio ¢ = 0.0. Starting from the trival state for
D = 0 and & = 0.0, we used continuation with D increasing
as described in Section 4. A simple fold point F; was found
and arclength continuation was used to accurately locate
the fold point and traverse it. The solution branch was
then continued with decreasing D and another fold point
F, was found. Again, this fold was located accurately and
traversed to obtain a third branch now with D increasing.
From the results, we see that all these solution branches
represent the symmetric flows. That is, all of Ay ;, vy ;, uy
are zero. The two fold points F; and F, are at D = 12752.2
and D = 950.4. These are in accordance with those com-
puted in [13]. We refer to [13] for more details about
the numerical results and discussions about the symmetric
solution branches. Here we show in Fig. 5a—Fig. 5c plots
of contour lines of the stream function and axial velocity
for the symmetric solution at D = 8000.0. The graph of
v./ys vs D are given in Fig. 3.

After the first simple fold point was traversed, we found
the signal that there exists another singular point which
was not found in [13]. The extended system (5.1) was used
to detect the symmetry-breaking bifurcation point B,
which was found at D = 12734.0 near the first fold point.
Then the asymptotic expression (4.14b) of the asymmetric
branch was used for the initial estimate of the Newton’s
method, which is effective to follow the asymmetric branch.
We could see the pattern of the asymmetric solution at D
= 18000.0 in Fig. 5d. We have computed the asymmetric
solution branch up to D = 33000.0, which is still discon-
nected with the symmetric solution branch, and no other
bifurcation points have been found. The further computa-
tion will be needed to detect more structure of the solution

path of the flows and the new symmetric solutions branch
is expected to connect the asymmetric solution branch.

Similarly, we have also found the same solution structure
for the following sets of values of Fourier truncation K,
mesh spacing /4, and the coiling ratio &:

(i) K=10,h=2;e=005¢=0.1
(i) K=15h=42;e=00,¢e=005¢=0.1.

The critical values of the Dean number are shown in Table
I. The contours of the stream function and the axial velocity
at D = 8000.0 for the symmetric solution and at D =
18000.0 for the asymmetric solution are shown in Fig. 6
and Fig. 7, corresponding to the case K = 10, h = 5%, & =
0.1 and the case K = 15, h = 4, e = 0.0, respectively.

During the computation, we monitor the appearance of
the positive eigenvalues of Jacobian Gx(X; D, ¢). The
stability results are schematically shown in Fig. 2 for the
case of k = 10, h = %.

Let M, denote the number of positive eigenvalues of
the Jacobian on the solution branches. M, = 0 on OF; and
M, = 1 on the other branches, which means that only the
symmetric two vortex flows on the solution branch OF; are
stable to asymmetric disturbances and the other solution
flows, including the asymmetric solution flows, are un-
stable.
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