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symmetric solutions are stable to symmetric disturbances,
while the symmetric branch joining them is unstable. TheyThe Dean problem of steady viscous flow through a coiled circular

pipe is studied numerically. We compute the structure of the sym- pointed out that there were unresolved issues including
metric families of the flows that exist as the crucial parameter D the possibility of asymmetric solutions and the response
varies, which is in accordance with those stated in Yang and Keller to asymmetric disturbances and the effects of curvature.
(Appl. Numer. Math. 2, 257, 1986). Furthermore, we find a asymmet-

In this paper, we would like to solve the above issuesric flow emanating from the symmetry-breaking bifurcation point,
proposed by Daskopoulos and Lenhoff [3]. We are inter-which they could not find since they restricted the numerical study

on the flows symmetric about the x-axis. Q 1996 Academic Press, Inc. ested in finding the asymmetric solution branch after the
symmetry-breaking bifurcation takes place for the flow of
the pipe with a circular cross section. Thus, we should

1. INTRODUCTION make Fourier expansions of the stream function, axial ve-
locity, and vorticity in more complete forms (3.1), which

The flow through curved pipes has long been studied means that the unknown Fourier coefficients are doubled
since the early works of Dean [4, 5]. For example, Dennis and the nonlinear terms in the equations are more compli-
[6], Collins and Dennis [2], and Dennis and Ng [7] have cated. Meanwhile the stability of the solution branches of
computed such flows when the coiling ratio a/L is small. the flows to asymmetric disturbances and the effects of
Here a is the pipe radius and L is the radius of the curvature curvature are also considered.
of the axis of the pipe. Van Dyke [10] has applied the The outline of the paper will be as follows. In Section
Stoke series and the Dombes–Sykes technique to this prob- 2 we formulate the problem, retaining the exact equations
lem. Yang and Keller [13] have computed the structure of (valid to all orders in « 5 a/L) which means that we con-
the symmetric families of the steady, laminar, viscous flows sider the effects of axial curvature. Expansions in Fourier
through a curved pipe of circular cross section that exists series are introduced in Section 3 to get a system of the
as the crucial parameter D varies. Here D is the Dean Fourier coefficients. Numerical methods are introduced in
number defined by Section 4. These employ centered difference and Newton’s

methods with continuation and path following techniques
D ; Ga3(2a/L)1/2/(en), introduced by Keller [9]. The stability of the flows to asym-

metric disturbances is also discussed in Section 4. The
extended systems which are used to locate the fold pointwhere G is the constant pressure gradient driving the flow,
and the symmetry-breaking bifurcation point accurately,e is the viscosity, and n is the coefficient of kinematic vis-
are proposed in Section 5. Numerical results are presentedcosity.
and discussed in Section 6.For the pipe with a rectangular cross section, Winters

[12] has computed the bifurcation structure of the flows
2. GENERAL FORMULATIONand found that a pair of asymmetric solutions arise from

a symmetry-breaking bifurcation point on the primary sym- We employ the notation used in [2, 7] as indicated in
metric flow branch. Fig. 1. The circular cross section of the tube in the (x, y)-

Daskopoulos and Lenhoff [3] have shown that for the plane has radius a with the centre at L on the x-axis. The
case of the circular cross solution the two- and four-vortex tube is coiled about a circle of radius L in the (x, z)-plane.

With no pitch in the coil the tube thus forms a torus. Our
equations are exact for this case. Dimensionless velocity* This work was supported by NSFC and State Major Key Project for

Basic Research. components of the fluid are (u, v, w) at a point P with
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FIG. 1. The tube cross sections showing coordinates, velocity components, axial flow distribution sketch and cross-flow streamlines sketch.

dimensionless polar coordinates (r, a). Here u is the radial and, on elimination of the pressure from the other momen-
tum equation,part and v is the angular section and r ; r9/a, where r9 is

the dimensional radius.
We seek flows independent of u, the angular deviation
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Boundary conditions on the wall of the tube, r 5 1, yield

Here « ; a/L is the ‘‘coiling ratio’’ and the continuity
equation is thus satisfied. Using these velocity components w(1, a) 5 f(1, a) 5

­f

­r
(1, a) 5 0, 0 # a # f. (2.6)

in the Navier–Stokes equations we introduce the modi-
fied Laplacian

Let the problem (2.3)–(2.5) be rewritten as the operator
form,
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G(Z, D, «) 5 0, (2.7)

where Z 5 (V, w, f). Obviously, the problem (2.3)–(2.5)1
1
r
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1 1 «r cos a

­

­aDG is Z2-symmetric, i.e.,

and the vorticity SG(Z, D, «) 5 G(SZ, D, «),

V 5 2=̃2f, (2.3) where SZ(r, a) 5 (2V(r, 2a), w(r, 2a), 2f(r, 2a)).
Yang and Keller [13] only studied the symmetric flows,

to get for the w-momentum equation, that is, they assumed

w(r, 2a) 5 w(r, a), f(r, 2a) 5 2f(r, a),
(2.8)=̃2w 1
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But in this paper we do not assume (2.8), as a result, both
of the symmetric and the asymmetric solution branches F d2

dr2 2
(k 1 1)(k 1 2)

r2 G wk11(r) 5 R1k(r)
are expected.

1 R3k(r) 2 dk,1«rD 2 dk,0D, k $ 0; (3.3a)
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where dk, j is the Kronecker symbol and R1k , R2k , R3k , R4k ,
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[(1 1 dn21,k)vun212ku(r) 1 (1 1 dn1k,1)vn211k(r)]J. problem formulated in Section 3 we first truncate the Fou-

rier expansions, then we use difference approximations(3.12)
on the system of ODEs, and finally solve the nonlinear
difference equations by means of Newton’s method andAt the origin, r 5 0, of the polar coordinates (r, a)
continuation procedures. We describe these techniquescontinuity requires that f(0, a), w(0, a), V(0, a) be inde-
below.pendent of a. From (3.1) we thus obtain that
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We replace a uniform grid of points rj 5 jh, 0 # j # Mone, since all of the equations are second order and we
1 1, with rM11 5 1 on the interval 0 # r # 1. At eachdo not have two boundary conditions on w0(r). This is
point of the grid we introduce approximations to the coef-easily remedied by noting that the equation in (3.3) for
ficients in (4.1b) with the notationk 5 0 can be reduced to a first-order equation. To do this
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tion, say uj :the result is the first-order equation
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FIG. 3. Friction ratio, cc/cs , vs. Dean number, D, for case k 5 10, h 5 fQ;, « 5 0.0.

2, ..., M. The quantities R1k ,j , R2k ,j , R3k ,j , R4k ,j , Nk,j , Mk, j ,
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approximations to the quantities in (3.5)–(3.12) centered
at rj . Since only first derivatives occur in these expressions
we employ D0 fn, j to approximate f 9n(rj), etc. The remaining2

(k 1 2)(k 1 3)
r2

j
Gvk12, j 5

1
2

«rjMk21, j 1 Mk, j
first-order equation (3.15) is centered at the points rj21/2

; ( j 2 As)h as
1

1
2

«rjMk11, j 1 P2k, j 1
1
2

«Q2k, j , k $ 0. (4.4b)

D2w0, j 1
1
2

«rj21/2[D2w1, j 2 (2/rj21/2)
1
2

(w1, j 1 w1, j21)]
Each of these difference equations is imposed for j 5 1,

FIG. 4. Friction ratio, cc/cs , vs Dean number, D, for case k 5 15, h 5 fQ;, « 5 0.0.
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FIG. 5. Axial velocity, w, and stream function, f, contour lines: D 5 8000, K 5 10, h 5 fQ;, « 5 0. (a) First symmetric branch: Max w 5 618.4,
Min w 5 0, Max f 5 24.08, Min f 5 224.08. (b) Second symmetric branch: Max w 5 628.9, Min w 5 0, Max f 5 23.04, Min f 5 223.04. (c)
Third symmetric branch: Max w 5 601.3, Min w 5 0, Max f 5 21.76, Min f 5 221.76. (d) D 5 18000. Asymmetric branch: Max w 5 1102, Min
w 5 0, Max f 5 32.51, Min f 5 232.51.
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FIG. 5—Continued

D0 fk,M11 ; fk,M12 2 fk,M

2h
5 0, k 5 1, 2, ..., K;

5
1

2rj21/2
OK
n51
Fn

1
2

( fn, j 1 fn, j21)
1
2

(wn, j 1 wn, j21)

D0hk,M11 ; hk,M12 2 hk,M

2h
5 0, k 5 0, 1, 2, ..., K.

2 n
1
2

(hn, j 1 hn, j21)
1
2

(un, j 1 un, j21)G
The mesh point rM12 is not in [0, 1] and so the values fk,M12 ,

2 rj21/2
1
2

D, j 5 1, 2, ..., M 1 1. (4.5) hk,M12 seem extraneous. However, they are eliminated by
imposing the difference equations in (4.2) at j 5 M 1 1.
The results, after using (4.6b) and the above, is for « 5 0:The boundary conditions (3.13) and (3.14) become the

corresponding conditions:

gk,M11 5 2
2
h2 fk,M , k 5 1, 2, ..., K, (4.7a)fk,0 5 hk,0 5 gk,0 5 vk,0 5 wk,0 5 uk,0 5 0, k 5 1, 2, ..., K;

h0,0 5 0; v0,0 5 0; (4.6a)
vk,M11 5 2

2
h2 hk,M , k 5 0, 1, 2, ..., K. (4.7b)

fk,M11 5 hk,M11 5 wk,M11 5 uk,M11 5 0, k 5 1, 2, ..., K;

h0,M11 5 w0,M11 5 0. (4.6b)
For « . 0 we must add the terms:

The remaining conditions, in (3.14b), (3.14d), are imposed
in order to retain second-order accuracy as

As«[gk21,M11 1 gk11,M11 1 D1D2( fk21,M 1 fk11,M)]
for (4.7a),

As«[vk21,M11 1 vk11,M11 1 D1D2(hk21,M 1 hk11,M)]TABLE I
for (4.7b).

Critical Dean Number Fm (m 5 1, 2), Fold Points; B1 ,
Bifurcation Point

The numerical problem is to solve the nonlinear system
K h « F1 F2 B1 of the difference equations in (4.2), (4.3), (4.4), (4.5), and

(4.7). These form 6KM 1 2K 1 3M 1 2 equations. There10 fQ; 0.0 12752.2 950.4 12734.0
10 fQ; 0.05 12822.9 1036.0 12355.7 are precisely that many unknowns h fk, j , hk, j , gk, j , vk, j , wk, j ,
10 fQ; 0.1 12963.2 1129.8 12026.4 uk, jj when the quantities in (4.6) are eliminated. We go
15 fQ; 0.0 12118.4 951.5 12111.6 further and use (4.7) to eliminate the 2K 1 1 quantities
15 fQ; 0.05 11783.2 1025.9 11777.5 hgk,M11 , vk,M11j. Then we have only (6K 1 3)M 1 1 equa-15 fQ; 0.1 11491.6 1106.5 11484.0

tions and unknowns.
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FIG. 6. Axial velocity, w, and stream function, f, contour lines: D 5 8000, K 5 10, h 5 fQ;, « 5 0.1. (a) First symmetric branch: Max w 5 622.3,
Min w 5 0, Max f 5 22.4, Min f 5 222.4. (b) Second symmetric branch: Max w 5 631.5, Min w 5 0, Max f 5 21.52, Min f 5 221.52. (c) Third
symmetric branch: Max w 5 606.9, Min w 5 0, Max f 5 20.81, Min f 5 220.81. (d) D 5 18000. Asymmetric branch: Max w 5 1100, Min w 5 0,
Max f 5 30.59, Min f 5 230.59.
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FIG. 6—Continued

4.3. Newton’s Method and Path Following Techniques finally (4.5) for j 5 M 1 1 can be written as a vector
equation in the form

To solve the difference equations we use Newton’s
method combined with continuation procedures to ensure
good initial estimates of the solution as the parameters are G(X; D, «) 5 0. (4.9)
varied. To do this efficiently the unknowns must be ordered
in a manner that simplifies the structure of the Jacobian

We denote solutions of (4.9) by X 5 X(D, «). It is obviousmatrix. To describe our ordering we first introduce the
that (4.9) has an exact solution X(0, 0) 5 0. Newton’svectors fj , hj , gj , vj , uj , and wj of dimensions K, K 1 1, K,
method and the continuation procedure are used to followK 1 1, K, and K 1 1, respectively:
the solution branch of (4.9) for the case of regular GX(X(D,
«), D, «). The initial estimation for X(D 1 dD, «) can be

f T
j ; ( f1, j , f2, j , ..., fK, j), 1 # j # M; obtained by

hT
j ; (h0, j , h1, j , ..., hK, j), 1 # j # M;

X(0)(D 1 dD, «) 5 X(D, «) 1 dDXD(D, «), (4.10)gT
j ; (g1, j , g2, j , ..., gK, j), 1 # j # M 1 1;

vT
j ; (v0, j , v1, j , ..., vK, j), 1 # j # M 1 1;

where XD(D, «) satisfies
uT

j ; (u1, j , u2, j , ..., uK, j), 1 # j # M;

wT
j ; (w0, j , w1, j , ..., wK, j), 1 # j # M. GX(X(D, «); D, «)XD(D, «) 5 2 GD(X(D, «); D, «).

(4.11)Recall that (4.7) gives gM11 5 22/h2fM and vM11 5 22/
h2hM (for the case « 5 0). Therefore, gM11 and vM11 can
be eliminated. The remaining (6K 1 3)M 1 1 unknowns The iterative sequence hX(i)(D 1 dD, «)j can be obtained
are represented in the vector by solving

XT ; (w0,0 ; f T
1 , gT

1 , uT
1 , hT

1 , vT
1 , wT

1 ; ...;
(4.8) GX(X(i); D 1 dD, «)(X(i11) 2 X(i))

(4.12)f T
M , gT

M , uT
M , hT

M , vT
M , wT

M).
5 2G(X(i); D 1 dD, «), i 5 0, 1, ....

Now we order the equations in a corresponding manner.
That is, for a fixed j-value we take (4.5) and all of (4.2a) Here GX is the Jacobian matrix which as a result of the

above-indicated ordering has the block-banded structurefor 1 # k # K, (4.2b) for 0 # k # K, (4.3a), (4.3b) for 1
# k # K, (4.4a) for 1 # k # K, (4.4b) for 0 # k # K. The shown below. Each square block is a submatrix of order

(6K 1 3) 3 (6K 1 3).equations ordered in this manner for j 5 1, 2, ..., M and
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FIG. 7. Axial velocity, w, and stream function, f, contour lines: D 5 8000, K 5 15, h 5 fQ;, « 5 0. (a) First symmetric branch: Max w 5 621.8,
Min w 5 0, Max f 5 23.95, Min f 5 223.95. (b) Second symmetric branch: Max w 5 632.5, Min w 5 0, Max f 5 22.93, Min f 5 222.93. (c)
Third symmetric branch: Max w 5 598.1, Min w 5 0, Max f 5 21.69, Min f 5 221.69. (d) D 5 18000. Asymmetric branch: Max w 5 1113, Min
w 5 0, Max f 5 32.21, Min f 5 232.21.
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FIG. 7—Continued

(2)9 G*D [ Range(G*X); i.e., kc, G*Dl 5 0, and

G*DXf 1 G*XXfv Ó Range(G*X),

where v [ Xs 5 hxuSx 5 xj is uniquely determined byGX ;3
[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]
.
.
.

.
.
.

.
.
.

[ ] [ ] [ ]

[ ] [ ]

4 .

G*Xv 1 G*D 5 0. (4.13)

The group theory applied to the bifurcation problem
shows that the solution path of (4.9) consists locally of two

There are M such rows of blocks. The matrix is block tri- smooth transversally intersecting branch Cs (symmetric)
diagonal. All other elements in GX are zero. Most of the and Ca (asymmetric) with the following representations
computing effort goes into solving the linear algebraic sys- (see [1]):
tems in (4.12). Thus, we use (4.10) to get a good initial
estimate to reduce the computational cost. The method Cs 5 h(X, D) : X 5 X* 1 jv 1 w1(j),
described in (4.10)–(4.12) is known as Euler–Newton con-

D 5 D* 1 j, uju , d0j, (4.14a)tinuation. It is extremely effective and usually converges
quadratically, except for the case of singular GX . The fail- Ca 5 h(X, D) : X 5 X* 1 jf 1 w2(j),
ure of the method to converge does usually signal the

D 5 D* 1 O(j 2), uju , d0j, (4.14b)presence of a bifurcation or fold point on the solution path
being generated. In particular, a simple fold with respect

where iwii 5 O(j 2), i 5 1, 2, v [ Xs , f [ Null(G*D) >to D is a singular solution, say (X*, D*), which has the
Xa , v is given by (4.13). The asymptotic expression (4.13)properties that:
is useful for the initial estimate of the Newton’s method

(1) dim Null(G*x ) 5 1; i.e., all solutions of G*Xf 5 0 which is very effective and quadratically convergent to
are f ; af0 , a [ R, for some nontrival symmetric f0 , follow the asymmetric solution branch near the symmetry-
That is, 0 ? f [ XS 5 hxuSx 5 xj. breaking bifurcation point.

To overcome the difficulty caused by the singularity,(2) G*D Ó Range(G*X); i.e., kc, G*Dl ? 0 for all solutions
pseudo-arclength continuation is introduced as in [9]; thatof (G*X)Tc 5 0.
is, we do not parameterize the solution path by D, but
rather introduce a new pseudo-arclength parameter s andA symmetry-breaking bifurcation point with respect to

D is a solution which has the property (1), except for f [ a new scalar constraint and seek to solve the augmented
systemXa 5 hxuSx 5 2xj and
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G(X(s), D(s), «) 5 0, (4.15a)
A

­X
­t

5 G̃(X; D, «),
N(X(s), D(s), s) ; kẊ(s0), [X(s) 2 X(s0)]l

1 Ḋ(s0)[D(s) 2 D(s0)]
where A is a positive definite matrix which is the approxi-1 (s 2 s0) 5 0. (4.15b)
mation of the operator (I

0
0

2=̃2), G̃(X; D, «) is the approxima-
tion of the right side of (4.17) which is equivalent to G(X;Here [X(s0), D(s0)] is a previously computed solution for
D, «).« fixed in the present discussion and for s 5 s0 . By Ẋ 5

The sign of eigenvalues of Jacobian A 21G̃X(X0 ; D, «),dX/ds, Ḋ 5 dD/ds we denote the components of a tangent
where X0 denotes a steady-state solution, determines thevector to the solution path hX(s), D(s)j. The constraint
stability of the flow. Since A 21 is also positive definite, thesimply requires that the point (X(s), D(s)) lies on the plane
sign of the corresponding eigenvalues of A 21G̃X(X0 ; D,normal to this tangent at a distance (s 2 s0) from the point
«) and G̃X(X0 ; D, «) is the same. During the computation,of tangency.
the appearance of the positive eigenvalues of G̃X(X0 ; D,We use the system (4.15) when the previous Euler–
«) is monitored (Fig. 2). The bifurcation analysis can alsoNewton scheme begins to show signs of failure (i.e., too
be made to decide the stability of the flows, because themany iterations until convergence). We solve (4.14) by
bifurcation phenomena is connected with the change ofNewton’s method. The Jacobian of this system is
the stability.

5. EXTENDED SYSTEMS
­(G, N)
­(X, D)

5SGX GD

NX ND
D , (4.16)

In order to locate the fold point and the symmetry-
where N(X, D, s) is the left side of (4.14b). This Jacobian breaking bifurcation points accurately, an extended set
is nonsingular at the regular solution points and at the of equations
simple fold points. This is why our method has no difficult-
ies in computing solution paths through folds. To solve for G(X, D) 5 0
the Newton iterations, we use the bordering algorithm

GX(X, D)f 5 0 (5.1)described in [7] which is designed for systems with coeffi-
cients as shown in (4.16). Lf 2 1 5 0

4.4. Stability
was proposed respectively by Moore and Spence [8],

The unsteady-state Navier–Stokes equations take the Werner and Spence [11] for detecting the fold point and
form the symmetry-breaking bifurcation point. Here X [ Xs ,

f [ Xs for the fold point, f [ Xa for the symmetry-
breaking bifurcation point, and L is a linear functional­w

­t
5 =̃2w 1

1
r(1 1 «r cos a) S­f

­r
­w
­a

2
­f

­a
­w
­rD1 D, which normalizes f. The Jacobian matrix of (5.1) is

(4.17a)

­

­t
(2=̃2f) 5 2=̃4f 1

1
r(1 1 «r cos a) 1

GX 0 GD

GXXf GX GXDf

0 L 0
2 (5.2)

S­f

­r
­

­a
2

­f

­a
­

­rD (2=̃2f)

which is regular at the fold point or the symmetry-breaking
bifurcation point. The regularity of (5.2) implies that the1

2«(2=̃2f)
(1 1 «r cos a)2 Ssin a

­f

­r
1

cos a
r

­f

­aD Newton method can be used to solve (5.1). The effective
algorithms were designed in [8, 11] to solve Newton’s itera-

2
w

(1 1 «r cos a)2 Ssin a
­w
­r

1
cos a

r
­w
­aD , tions with Jacobian (5.2).

(4.17b) 6. NUMERICAL RESULTS AND DISCUSSION

In addition to the stream function and flow velocity, wewhere time is scaled as t 5 nt/a2.
After discrete approximations, the system equations can have computed Re, the Reynolds number based on the

mean axial velocity,be written in the form as
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path of the flows and the new symmetric solutions branchRe 5 2Ï2 E1

0
w0(r)rdr,

is expected to connect the asymmetric solution branch.
Similarly, we have also found the same solution structure

and the friction ratio (ratio of curved, cc , to straight, cs , for the following sets of values of Fourier truncation K,
wall friction): mesh spacing h, and the coiling ratio «:

(i) K 5 10, h 5 f;A ; « 5 0.05, « 5 0.1.cc

cs
5 4Ï2 Re/D. (ii) K 5 15, h 5 f;A ; « 5 0.0, « 5 0.05, « 5 0.1.

The critical values of the Dean number are shown in Table
We have computed solution paths with D varying for I. The contours of the stream function and the axial velocity

the Fourier truncation K 5 10, mesh spacing h 5 1/40, at D 5 8000.0 for the symmetric solution and at D 5
and coiling ratio « 5 0.0. Starting from the trival state for 18000.0 for the asymmetric solution are shown in Fig. 6
D 5 0 and « 5 0.0, we used continuation with D increasing and Fig. 7, corresponding to the case K 5 10, h 5 f;A , « 5
as described in Section 4. A simple fold point F1 was found 0.1 and the case K 5 15, h 5 f;A , « 5 0.0, respectively.
and arclength continuation was used to accurately locate During the computation, we monitor the appearance of
the fold point and traverse it. The solution branch was the positive eigenvalues of Jacobian GX(X; D, «). The
then continued with decreasing D and another fold point stability results are schematically shown in Fig. 2 for the
F2 was found. Again, this fold was located accurately and case of k 5 10, h 5 f;A .
traversed to obtain a third branch now with D increasing. Let Mp denote the number of positive eigenvalues of
From the results, we see that all these solution branches the Jacobian on the solution branches. Mp 5 0 on OF1 and
represent the symmetric flows. That is, all of hk, j , vk, j , uk, j Mp $ 1 on the other branches, which means that only the
are zero. The two fold points F1 and F2 are at D 5 12752.2 symmetric two vortex flows on the solution branch OF1 are
and D 5 950.4. These are in accordance with those com- stable to asymmetric disturbances and the other solution
puted in [13]. We refer to [13] for more details about flows, including the asymmetric solution flows, are un-
the numerical results and discussions about the symmetric stable.
solution branches. Here we show in Fig. 5a–Fig. 5c plots
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